
Copyright© 2009 KRvW Associates, LLC

Secure Development 

Processes
SecAppDev2009



Copyright© 2009 KRvW Associates, LLC

What’s the problem?

 Writing secure software 
is tough

 Newcomers often are 
overwhelmed

– Fear of making mistakes 

can hinder

 Tend to delve into 
security superficially

– Pen testing

– Purchase a source code 

analyzer

 Business needs 
software dev to be

– Predictable

– Repeatable

– Reliable

 This can drive the 
need for a solid 
process

– Consistently applied



Copyright© 2009 KRvW Associates, LLC

Consider a Secure SDLC

 Several to choose from

 Enough good in each to 
consider all

– Look carefully at each 

author’s perspective

 Apply consistently and 
measure



Copyright© 2009 KRvW Associates, LLC

Who are the players?

 Microsoft

– Secure Development Lifecycle

– “The Security Development Lifecycle,” Michael Howard and 
Steve Lipner, Microsoft Press, ISBN 978-0-7356-2214-2

 Cigital

– “Touchpoint” process

– “Software Security: Building Security In,” Gary McGraw, 
Addison-Wesley, ISBN 0-321-35670-5

– http://BuildSecurityIn.US-CERT.gov

 OWASP

– Comprehensive Lightweight Application Security Process 
(CLASP)

– http://www.owasp.org/index.php/OWASP_CLASP_Project

http://BuildSecurityIn.US-CERT.gov
http://BuildSecurityIn.US-CERT.gov
http://BuildSecurityIn.US-CERT.gov
http://BuildSecurityIn.US-CERT.gov
http://www.owasp.org/index.php/OWASP_CLASP_Project


Copyright© 2009 KRvW Associates, LLC

MS-SDL Overview

 Consists of 12 stages

– Stage 0: Education and awareness

– Stage 1: Project inception

– Stage 2: Define and follow design best practices

– Stage 3: Product risk assessment

– Stage 4: Risk analysis

– Stage 5: Creating security documents, tools, and best 

practices for customers

– Stage 6: Secure coding policies



Copyright© 2009 KRvW Associates, LLC

MS-SDL Overview, cont’d

– Stage 7: Secure testing policies

– Stage 8: The security push

– Stage 9: The final security review

– Stage 10: Security response planning

– Stage 11: Product release

– Stage 12: Security response execution



Copyright© 2009 KRvW Associates, LLC

Stage 0: Education and 

Awareness
 Good stuff, make sure your developers 

understand what needs to be done and why

 Knowledge management should include

– Attacks and how to prevent, detect, respond

– Language pitfalls

– Secure design patterns

– How to apply the SDLC

 Developers should get annual training

– Novice through expert



Copyright© 2009 KRvW Associates, LLC

Stage 1: Project Inception

 Decide on each of the following:

– Should app be written to SDL?

– Security advisor

– Security leadership team

 Roles, responsibilities, expectations

– Bug tracking process

– “Bug bar”



Copyright© 2009 KRvW Associates, LLC

Stage 2: Design Best Practices

 Define and follow, based on

– Secure design principles

 Think Saltzer and Schroeder

– Attack surface analysis and reduction



Copyright© 2009 KRvW Associates, LLC

Stage 3: Product Risk 

Assessment
 Analyze the product’s functions and their 

“danger” levels

– Use their sample questionnaire as a starting 

point

 Determine the privacy impact

 How much effort should be applied?



Copyright© 2009 KRvW Associates, LLC

Stage 4: Risk Analysis

 This one really comes down to

– Threat modeling

– Using threat model to aid code review

– Using threat model to aid testing

– Determine key success factors and metrics

 Guided by

– STRIDE (Spoofing, Tampering, Repudiation, Info 
disclosure, DoS, Elevation)

– DREAD (Damage, Reproducibility, Exploitability, 
Affected Users, Discoverability)



Copyright© 2009 KRvW Associates, LLC

Stage 5: Customer focus

 Creating security documents, tools, and 
best practices for customers

– Help your customers run your application 

securely

– Security features, settings, file access controls, 

etc.



Copyright© 2009 KRvW Associates, LLC

Stage 6: Secure Coding 

Policies
 Ensure each of the following

– Use latest compiler, library, and features

– Do source code analysis (with tools)

– Avoid banned functions (and don’t re-invent 

them)

– Avoid exploitable constructs or designs

– Follow a secure coding checklist



Copyright© 2009 KRvW Associates, LLC

Stage 7: Secure Testing 

Policies
 Basically, get (way) beyond the 

penetration test

– Fuzzing

– Penetration testing

– Run-time verification

– Update threat models

– Update attack surface



Copyright© 2009 KRvW Associates, LLC

Stage 8: The Security Push

 Basically, a concerted effort to ensure 
everything was done right, just before 
launch

– Check and double check everything



Copyright© 2009 KRvW Associates, LLC

Stage 9: Final Security Review

 Fundamentally, answer whether the 
product is ready to ship

– Validate unfixed bugs (and why)

– Verify we did all that other stuff

– Team sign-off



Copyright© 2009 KRvW Associates, LLC

Stage 10: Security Response 

Planning
 What do we do when things go wrong?

– Specifically, the dev team

– Plan for it

– Designate the team

– Ensure facilities are available



Copyright© 2009 KRvW Associates, LLC

Stage 11: Product Release

 Does it dump core? Ship it!

 Final coordination of product security 
issues

– Product support staff ready?

– Update server functional?



Copyright© 2009 KRvW Associates, LLC

Stage 12: Security Response 

Execution
 Follow the plan

– Don’t (kernel) panic

 Iterate as necessary

 Capture lessons learned

 Feedback loop to product dev team



Copyright© 2009 KRvW Associates, LLC

Cigital’s “Touchpoints”

 Built by McGraw et 
al over time

– Perspective is 

consulting services

 Consists of three 
pillars

– Risk management

– Knowledge

– Touchpoints



Copyright© 2009 KRvW Associates, LLC

Artifact-driven

 Touchpoints represent process-agnostic 
reviews that can be done on each dev 
artifact

– Enables the security effort to adapt to any 

SDLC methodology

 Guiding principle is to not change dev 
process, but to deeply integrate with it



Copyright© 2009 KRvW Associates, LLC

The Touchpoints



Copyright© 2009 KRvW Associates, LLC

Touchpoint 1: Code review

 Code review is a necessary evil

 Better coding practices make the 
job easier

 Automated tools help catch silly 
errors

– Fortify/dev (Cigital rules)

 Implementation errors do 
matter

– Buffer overflows can be 
uncovered with static 
analysis

– Fortify SCA

 Over 500 C/C++ rules

 Over 100 Java rules

 Tracing back from vulnerable 
location to input is critical

– Software exploits

– Attacking code



Copyright© 2009 KRvW Associates, LLC

Touchpoint 2: Architectural risk 

analysis
 Build a one page white board 

design model

 Use hypothesis testing to 
categorize risks

– Threat modeling/Attack patterns

 Rank risks

 Tie to business context

 Suggest fixes

 Repeat



Copyright© 2009 KRvW Associates, LLC

Touchpoint 3: Penetration testing
 A very good idea since software is bound in 

an environment

 How does the complete system work in 
practice?

– Interaction with network security mechanisms

– Firewalls

– Applied cryptography

 Penetration testing should be driven by risks 
uncovered throughout the lifecycle

 Not a silver bullet!



Copyright© 2009 KRvW Associates, LLC

Touchpoint 4: Security testing

 Test security functionality

– Cover non-functional requirements

– Security software probing

 Risk-based testing

– Use architectural risk analysis results to drive scenario-based 
testing

– Concentrate on what “you can’t do”

– Think like an attacker

– Informed red teaming



Copyright© 2009 KRvW Associates, LLC

Touchpoint 5: Abuse cases

 Use cases formalize normative behavior (and assume correct 
usage)

 Describing non-normative behavior is a good idea

– Prepare for abnormal behavior (attack)

– Misuse or abuse cases do this

– Uncover exceptional cases

 Leverage the fact that designers know more about their 
system than potential attackers do

 Document explicitly what the software will do in the face of 
illegitimate use

 Think like an attacker!



Copyright© 2009 KRvW Associates, LLC

Touchpoint 6: Security 

requirements
 Some security 

functionality maps 
naturally to clear 
requirements

– Medical data should 
be cryptographically 
protected

– Strongly authenticate 
users

– Meet GLBA 
regulatory guidelines

 But do not forget that 
security is an emergent 
property of a complete 
system

– An attacker needs to find 
only one hole

– “Do not allow buffer 
overflows” is not much of 
a requirement!

– “Make it secure” is vague



Copyright© 2009 KRvW Associates, LLC

Touchpoint 7: Security 

operations
 Use your resources!

 Network security people know an awful 
lot about real attacks

 Involve knowledgeable security people in 
as many touchpoint activities as possible

 Fine tune the deployed environment to 
the specific needs of your application

– “Standard OS build” process is not enough



Copyright© 2009 KRvW Associates, LLC

OWASP’s CLASP

 Built on seven best practices

– Institute awareness programs

– Perform application assessments

– Capture security requirements

– Implement secure dev processes

– Build vulnerability remediation procedures

– Define and monitor metrics

– Publish operational security guidelines



Copyright© 2009 KRvW Associates, LLC

OWASP’s CLASP

 Built on seven best practices

– Institute awareness programs

– Perform application assessments

– Capture security requirements

– Implement secure dev processes

– Build vulnerability remediation procedures

– Define and monitor metrics

– Publish operational security guidelines



Copyright© 2009 KRvW Associates, LLC

Documentation

 CLASP is open source and available for 
download:

– http://www.list.org/~chandra/clasp/OWASP-

CLASP.zip

http://www.list.org/~chandra/clasp/OWASP-CLASP.zip
http://www.list.org/~chandra/clasp/OWASP-CLASP.zip
http://www.list.org/~chandra/clasp/OWASP-CLASP.zip


Copyright© 2009 KRvW Associates, LLC

The Good

 Microsoft

– Roles and 

responsibilities

– Planning for incidents

– Customer tips

– Positive practices

– Testing

 Cigital

– Review-based

– Depth of ARA

– Code reviews

 OWASP

– Free and open

– Security requirements

– Metrics



Copyright© 2009 KRvW Associates, LLC

The Not-So-Good

 Microsoft

– Pretty heavy

– Designed for MS

 Cigital

– Review-centric

– Light on positive 

practices

 OWASP

– Lots of details yet to 

be finished



Copyright© 2009 KRvW Associates, LLC

Considerations in Choosing

 One size does NOT 
fit all

 Cultural issues

– Dev org size

– How “process heavy” 

are you now?

– Across entire 

organization



Copyright© 2009 KRvW Associates, LLC

Plan Your Own Hybrid

 Look at each process

 Which components 
are likely to work 
best for you?

– Feasibility is vital

– Sometimes best isn’t 

better

 Think things through 
carefully



Copyright© 2009 KRvW Associates, LLC

Plan of Action

 What is in place 
now?

 Target process

 Gap analysis

 Chart a course

– Small steps

– Defect data helps to 

prioritize steps

 Buy-in is essential



Copyright© 2009 KRvW Associates, LLC

Other Considerations

 Designate a lead

– Be available to answer 

questions 

 Document your process

 Provide clear guidelines 
on how to implement

 Some developers 
“allergic” to process

 Allow for feedback

– Adapt as necessary

 Publish results

– Tips and pitfalls

– Case studies

 Applying consistently is 
important

 None of this will happen 
by itself



Copyright© 2009 KRvW Associates, LLC

Kenneth R. van Wyk

KRvW Associates, LLC

Ken@KRvW.com

http://www.KRvW.com

mailto:Ken@KRvW.com
http://www.KRvW.com
http://www.KRvW.com

